A User Incentive-Based Scheme Against Dishonest Reporting in Privacy-Preserving Mobile Crowdsensing Systems

نویسندگان

  • Xinyu Yang
  • Cong Zhao
  • Wei Yu
  • Xianghua Yao
  • Xinwen Fu
چکیده

Proliferating Mobile Crowdsensing Systems (MCSs) is a promising paradigm to realize large-scale sensing targets in an agile and economical manner. Privacy protection mechanisms, which alleviate mobile user’s concern on participating MCS tasks, also introduce the issue of data quality to the MCS server. In privacy-preserving MCSs, dishonest reporting of mobile sensing data from task participants could severely affect the MCS sensing accuracy. In this paper, we develop a user incentive-based scheme against dishonest reporting in privacy-preserving MCSs. Our proposed scheme is capable of improving the MCS sensing accuracy by encouraging users to honestly upload obtained sensing information for a higher serving profit. The performance of our scheme is evaluated via extensive real-world trace-driven simulations. Our experimental results show that our scheme can effectively ensure MCS sensing accuracy while encouraging honest reporting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attribute-based Access Control for Cloud-based Electronic Health Record (EHR) Systems

Electronic health record (EHR) system facilitates integrating patients' medical information and improves service productivity. However, user access to patient data in a privacy-preserving manner is still challenging problem. Many studies concerned with security and privacy in EHR systems. Rezaeibagha and Mu [1] have proposed a hybrid architecture for privacy-preserving accessing patient records...

متن کامل

Incentivizing Verifiable Privacy-Protection Mechanisms for Offline Crowdsensing Applications

Incentive mechanisms of crowdsensing have recently been intensively explored. Most of these mechanisms mainly focus on the standard economical goals like truthfulness and utility maximization. However, enormous privacy and security challenges need to be faced directly in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable privacy-protection crowdsens...

متن کامل

LEPA: Incentivizing Long-term Privacy-preserving Data Aggregation in Crowdsensing

In this paper, we study the incentive mechanism design for real-time data aggregation, which holds a large spectrum of crowdsensing applications. Despite extensive studies on static incentive mechanisms, none of these are applicable to real-time data aggregation due to their incapability of maintaining PUs’ long-term participation. We emphasize that, to maintain PUs’ long-term participation, it...

متن کامل

TripSense: A Trust-Based Vehicular Platoon Crowdsensing Scheme with Privacy Preservation in VANETs

In this paper, we propose a trust-based vehicular platoon crowdsensing scheme, named TripSense, in VANET. The proposed TripSense scheme introduces a trust-based system to evaluate vehicles' sensing abilities and then selects the more capable vehicles in order to improve sensing results accuracy. In addition, the sensing tasks are accomplished by platoon member vehicles and preprocessed by plato...

متن کامل

Location Privacy-Preserving Task Allocation for Mobile Crowdsensing with Differential Geo-Obfuscation

In traditional mobile crowdsensing applications, organizers need participants’ precise locations for optimal task allocation, e.g., minimizing selected workers’ travel distance to task locations. However, the exposure of their locations raises privacy concerns. Especially for those who are not eventually selected for any task, their location privacy is sacrificed in vain. Hence, in this paper, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017